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Coupled Langmuir and nonlinear ion-acoustic waves in collisional plasmas
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It is shown that the interaction of Langmuir waves and finite-amplitude collision-dominated ion-
acoustic waves in a collisonal plasma is governed by the coupling of a damped nonlinear Schrédinger
equation and a driven Korteweg—de Vries—Burger equation. The system differs considerably from
the Zakharov and related systems for a collisionless plasma.

PACS number(s): 52.35.Ra, 52.35.Mw, 52.35.Tc, 52.35.Fp

I. INTRODUCTION

Processes in low-temperature collisional plasmas have
been of much recent interest because of their relevance in
many laboratory plasmas as well as many modern techno-
logical applications of plasmas. Collisional plasmas have
the property that dissipative effects and the correspond-
ing transport are important, and the charged particles
have comparable temperatures. An important problem
in collisional plasmas is that of wave propagation, as the
stability and the subsequent nonlinear behavior of the
waves can crucially affect the property of the plasma
[2-6].

Two commonly occurring modes in collisional plasmas
are the Langmuir and the ion-acoustic waves. The high-
frequency (w = wpe > Ve, where wy. is the electron
plasma frequency and v, is an effective electron collision
frequency) Langmuir waves are driven by the ambipo-
lar electrostatic force and electron inertia, and the low-
frequency (w = kc; < v;, where k is the wave vector, ¢, is
the ion sound speed, and v; is an effective ion collision fre-
quency) collisional ion-acoustic waves are driven by the
electron pressure and ion inertia, the coupling between
the species being maintained by electrostatic forces and
electron-ion collisions. That is, the electron dynamics in
the Langmuir waves can be described by the usual warm-
fluid theory modified by weak frictional dissipation, while
both the electron and ion dynamics in the ion-acoustic
waves can be described by the Braginskii [1] transport
equations. Thus, although aside from the damping terms,
the linear dispersion relations for both waves remain simi-
lar to that of the collisionless hot-plasma case, the physics
of the ion-acoustic waves in a highly collisional plasma is
more complicated, since both electrostatic and collisional
effects enter into play. In particular, collisons between
the unlike particles can also couple the dynamics of the
ions and the electrons. In other words, the waves involve
both plasma and neutral-fluid properties.

The nonlinear interaction of Langmuir and ion-
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acoustic modes has been of great interest in plasma
physics for several decades [7-13]. The problem is im-
portant not only because of the frequent occurrence of
the two modes, but also because the interaction is rep-
resentative of many similar wave interactions in which
finite amplitude high-frequency waves can modulate the
background plasma parameters such as the density, mag-
netic field, etc. through low-frequency waves or quasi-
modes. Such interactions have been thought to be the
cause of turbulence in many plasmas. Although there
exists a large number of studies on the Langmuir-wave—
ion-acoustic wave interaction in collisionless or weakly
dissipative plasmas, there seems to be no comprehensive
investigation of such interactions in a collision-dominated
plasma. In this paper, we derive the equations govern-
ing the coupling of Langmuir and ion-acoustic waves in
a collisional plasma, using the complete set of the Bra-
ginskii equations [1] for the low-frequency motion. Ion
nonlinearity is taken into account since it is well known
that the ponderomotive force of the high-frequency waves
can easily cause finite-amplitude density modifications
[7,14,15]. We found that the interaction is described by
a coupled set of evolution equations consisting of a non-
linear Schrédinger equation (NSE) modified by weak dis-
sipation, and a high-frequency field-driven Korteweg—de
Vries-Burger (KdVB) equation. These equations are the
counterpart of the Zakharov [8,9] or more precisely, the
Nishikawa et al. [7], equations for a collisionless plasma.
Here, besides the appearance of dissipative terms, the
scaling and therefore the physics in these equations are
different from those of the collisionless case. In particu-
lar, in contrast to the latter, where the nonlinearity orig-
inates from ion convection and electron pressure, here it
is dominated by the thermal forces and interspecies heat
transfer. Furthermore, the driven KdVB equation is not
reducible to a KdV equation because of the collisional
scaling. Quasistationary envelope shocklike solutions are
obtained numerically.

II. BASIC EQUATIONS

For the Langmuir waves, we use the warm-fluid equa-
tions for the electrons. Since the Langmuir frequency is
much larger than any of the electron collision frequen-
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cies, collisional damping can be taken into account by
including a simple frictional damping term —v,v,. (where
ve and v, are the effective electron collision frequeny and
the electron fluid velocity, respectively) on the right hand
side of the electron momentum equation.

The frequency of the collision-dominated ion-acoustic
waves is much less than the electron and ion collision
frequencies. Thus for both species one can use the
Braginskii transport equations [1], which were obtained
from the kinetic equation with the Landau collision in-
tegral. We are interested in the case of strong Langmuir
fields, namely |EL|?/noT > m./m; and |EX|2/n,T >
(1-V2/v%)2 > m./m;, where EL is the Langmuir wave
electric field, ng and T are the unperturbed density and
temperature, m./m; is the electron to ion mass ratio, V'
is the wave speed, and v, is the sound speed. Thus we
have to take into account the nonlinear as well as the
dispersive and dissipative terms in the derivation of the
low-frequency potential. Furthermore, unlike the case
for hot collisionless plasmas, where for the ion waves the
electrons are in thermal equilibrium and governed by the
Boltzmann distribution, here the full dynamics of both
the ions and electrons must be taken into account.

Accordingly, for the ion waves we start with the com-
plete set of the Braginskii’s equations for both the elec-
trons and ions. For the fluid velocities v. and v;, of the
electrons and ions, we have

MeNe (O + Ve - V)ve,;

= —V]"I'LET’e - Vﬂl'l(;) - eneEj + R]‘ s (1)
and

mini(c‘)t + v, iV)U,‘;j

= —V;nT; — Vimy) + en;E; — R; , (2)

where the sub- or superscripts e and 7 denote electron
and ion quantities, respectively, and [ and j are dummy
spatial-direction indices. Furthermore, *e, me;, ne,
and T, ; are the charge, mass, density, and temperature
of the electrons and ions, and E is the total electric field.

Equations (1) and (2) are closed by the continuity
equations

Onei + V- (Ne,ivei) =0, (3)
and the energy balance equations
3nei (0 + Veyi - VTei + ne,iTe iV - Ve i
=-V-q®) 1V i1+ Qe - (4)

In the above equations, the terms —VnT,; are the
pressure forces of the electron and ion fluids. The stress

tensors 7rl(je’i) are given by
Te nTi )

e Ne % il
7"1(3') = —O.73—U~w,j , ij) = —0.96 o Wi o (5)

where v; is the collision frequency of species j, and the

rate of strain tensors wl(;’i) is defined by

wl(;’i) = bijve‘i;l + V,ve,,—;j — §<$le “Veys - (6)

The frictional force R between the electrons and ions
is

R=R,+Rr, (7)

where R, is associated with the force of relative friction
(for w <k ve)

R, = -0.51n.m.v.u, (8)

which depends only on the relative velocity u=v,—v,
between the electrons and ions. In the opposite limit,
namely w > V., we use the mathematically similar relation
R,~—n.mereu.

The thermal-gradient frictional force Ry apppearing
in (7) is given by

Ry = —-0.71n. VT, . (9)

Furthermore, the heat fluxes q(*) are

e e) neTe
q® =q® + q(T = 0.71n.Teu — 3.16@VT9_
; T
qV = —3.9 v, (10)
m;v;

and the heating powers Q. ; are

Me

Q=-R-u—-Q;, Q=3

nevVe(Te — T3) . (11)
m;

In the following, we shall solve the above equations by

expanding in powers of the electric field E.

III. EQUATION FOR HIGH-FREQUENCY
WAVES

To obtain the evolution equation for the Langmuir
wave envelope, we must take into consideration electric
fields of the low-frequency sound waves (which modu-
late the density) as well as the high-frequency Lang-
muir waves. The derivation follows standard methods
[2,3,5-13], the difference being the inclusion of the colli-
sion terms. Thus, for the Fourier components

1 . .
Ex. = @n) /E(r,t) exp(iwt — itk -r)dr dt  (12)

of the longitudinal fields

k
Ek.w = '—Ek,wv (13)
= k|
we obtain
4
El[(l,wElE,w = ._m.p{;i ) (14)



49 COUPLED LANGMUIR AND NONLINEAR ION-ACOUSTIC. .. 1571

where eﬁ‘yw is the usual linear (high-frequency) dielectric

permittivity

2 2,,2 2
L1 Wpe B 3k“vy wpe (15)
kyw (w+ive)w (w+ive)dw’

Wpe = (4mnce? /m¢)1/? is the electron plasma frequency
and vy, = (To/m.)/? is the electron thermal velocity.
Note that v, describes weak (since v < wpe) collisional
damping of the Langmuir waves.

The nonlinear second-order charge density propor-
tional to the high-frequncy Langmuir and low-frequency
sound fields (recall that the low-frequency quantities are
governed by the Braginskii equations) is

ie / wl, (k-k1)|ko|

- drm, | wwiwzkwe|k;|

P, = E¢ . B ,dK dQ,

(16)
where the subscripts 1 and 2 are dummy wave number in-
dices, S denotes the sound wave field, and d2 dK stands

for 6((1)“‘0)1—0)2)5(1(—1(1“—1(2) dwld(Lszkldkg. In Eq (16)
we have defined

k2v2_1.71 — 0.71A;
k=1+ (0.51ue +1.715 0T )

Q. A
1 1
x(_+me—)z1, (17)
We m; w;
kzv% 'lwAe 4 kz’v%
= —dw+imTe (1 _171 70.73—==
We w+1 ” ( Q.A + 3 3
k%v2_5+2-0.71
~ i e 18
i - , (18)
kz'u%.i wlAe wA,
= ; 1-— 0.71
w; w+1 o Q.A + Q.A
4 k22
42096~ Te
3 Ve
) k?v2.5—-2.0.71
~1oio(1-DR2EN) g
3 k2 2
Q. = —iw +3.16~—Te 1 3¢y ~ 3Ty, (20)
2 Ve m; mi
3 k2 2 e e
Q= —Siw+3.9—Ti 1 37y ~3T ~ Q. (21)
2 7 m; mi
Me V,
Ae,i =1+ 317: Q.:e ~ 2 ) (22)
and
m 2 3 m; w
A=1-— 3__‘3!3 o~ -t 23
( miu ) Qeﬂi me Ve ( )

Note that To = T. =~ T; is the equilibrium plasma tem-
perature. Here and in the following, we retain the nu-
merical coefficients in their original forms, so that the

origins of the various, in particular the coupling, terms
can be identified easily.

Thus, for the slowly varying amplitude Ef = E(z,t)
of the one-dimensional Langmuir waves propagating in
the = direction

ET = Ey, exp(—iwpet) + c.c., (24)

we obtain the damped NSE for the Langmuir waves

, e 3vZ 30 ewpe
We , e Vg, = R%ep oo (25
(’8‘+ 2 1 2, ) L=5977, Press  (29)

where g is the low-frequency acoustic wave potential
(Es =—0;9s), and B = 10/(5 + 2 - 0.71). Since for the
case considered we have |0;E| < |veFL|, the term 8, Ef,
is an order smaller than v.FEf.

Note that the coupling coefficient on the right hand
side of (25) originates from the pressure and thermal
forces, as well as the heating power, and in spite of the
mathematical similarity, differs considerably from that
for collisionless (or weakly collisional) plasmas (compare
with Refs. [7,10,11]). We also recall that, similar to the
standard NSE for collisionless Langmuir waves, although
the first term in (25) is small, it must be retained in order
to allow for a small phase shift of the nonlinear waves,
needed for balancing the complex part of the equation.

IV. EQUATION FOR LOW-FREQUENCY WAVES

For the Fourier components of the low-frequency elec-
tric fields, we have an equation similar to (14), namely

47
Elinlf,w = —W (plffg + P]I;f:,) ’ (26)

where the linear dielectric permittivity el‘f’w for the colli-
sional acoustic waves is given by (see [5,16])
w

2 32 Ty 2
1w, w, m
e e e e
Ei(g w 1 P P~ £ Wi We | -
’ KWwWwe KWW, KWeWw; m;

(27)

The nonlinear part of (26), in contrast to (14), consists
of two parts. The first, pfi, is from the ion nonlinearity
[16], and is given by

R S (L L X1
w3 4mmy WwiwaKWw; |k1||k2]
X Ey. i Bigy 0y AKdQ . (28)

The second nonlinear term in (26) is the generalized
ponderomotive force exerted by the Langmuir waves

LL e / w:eVeAekzkl'kz
Pyw = 4mm; | wwiwakw;ReAlk||kz|
E}E dK 49, (29)

k2 ,w2

where the asterisk stands for the complex conjugate.
Note also that wy~ —wpe.



1572 S. V. VLADIMIROV AND M. Y. YU 49

Finally, for the one-dimensional low-frequency field po-
tential

3.16 m; v2
8 sa:c"‘—““_l‘ = TT
[ v 50 me ve
2 2 3
3.16 m; v
51 — * 29
" (50) (m) v2 ’”"]"’S
48 e 2 1 ev, 2
=—-——30, — Erl®, (30
3 mios 2 (¢s) +3ﬂmew§e| tl®, (30)

where v, = 1/10T,/3m; is the speed of the collisional
ion-acoustic waves (see Refs. [5,16]). Equation (30) gen-
eralizes the standard KdVB equation for describing the
nonlinear evolution of collisional ion-acoustic wave [16]
in the presence of Langmuir oscillations.

Without the driving force (i.e., when Ej = 0), (30)
has been extensively studied in the literature, and has
the well known quasistationary solution depicting a shock
wave with a spatially decaying and oscillating tail or front
[2-4]. Unlike the KAVB equation for a weakly collisional
plasma, (30) cannot be reduced to a simple KdV equa-
tion because here the scaling (i.e., the normalization pa-
rameters) is fixed, as is evident from the absence of free
parameters which can be rescaled in order to neglect the
dissipation term.

V. QUASISTATIONARY SOLUTION

The coupled set of nonlinear evolution equations (25)
and (30) can be conveniently normalized such that in the
dimensionless variables we have

(a0 + iy + Ozz) € = poé (31)
and

(8t + 6.1: - azz + 5821:2) d) - _az(¢)2 + |5|2 k] (32)

where t and = have been normalized by 3.16m;/50m.v,
and 3.16m;v,/50m.v,, respectively, and we have defined
& = 4PBep/3m;v?, and € = 2eEL/(3Mewpevs1/50/3.16).
We also have assumed for convenience that v.m., << v;m;
[16]. The dimensionless parameters a, v, and p in (31)
and (32) are

2 (10 3.16 wpe 4 v,
a=S ()= =y,
3\ 3 50 v, 3 wpe
2 2
1 /10 /3.16\ > m; w2
= (=) (22 . 33
b 4(3)(50)meu§ (33)

We emphasize that the present scaling is completely dif-
ferent from that for a collisionless plasma. In particular,
we note that (32) contains no free parameters.
Equations (31) and (32) describe Langmuir wave prop-
agation or turbulence in the presence for low-frequency
finite-amplitude ion (or background plasma) response in
a highly collisional plasma. A detailed investigation of
possible phenomena, especially those related to Lang-

muir turbulence, associated with these coupled partial
differential equations is beyond the scope of this paper.
Instead, we shall present a numerical solution which de-
picts a possible quasistationary state of the collisional
Langmuir-acoustic interaction.

Assuming £ = &y(&) exp(—vt/a — it + iKz), and
¢ = p(€), where ¢ = z— V't with V a constant, we obtain
from (31) and (32) the ordinary differential equations

dﬁego +8&y = nodo , (34)

and
[5deee — dee + (1— V)de] ¢ = —de (¢)> + €2, (35)

where K = (aV +v)/2 and § = —K? — o). To preserve
the ordering of (31), the condition |y&o+aVd¢&o| < |vEo|
must be satisfied. From the latter we see that V should
be negative and sufficiently large.

For given initial values, Egs. (34) and (35) yields os-
cillating (among others) solutions for £ and ¢ which in-
crease in magnitudes, until a stage of exponential growth
occurs. The rates of amplitude increase depend on the
parameters §, u, and V. Envelope shock solutions can
be constructed in a manner similar to that for the usual
oscillating shock solutions of the KdVB and related equa-
tions [2,4,17]. We first note that the constants £, = 0 and
¢ = const also satisfy the equations. Thus one needs to
find solutions for & and ¢ such that at some &, &, d¢&o,
and d¢¢ all vanish. At this point, one can match the two
sets of solutions. Such a solution is given in Fig. 1, for
which § = 2.5, u = 0.15, and V = —4.5. These parame-
ters are chosen such that the corresponding result most
clearly demonstrates the matching process and the be-
havior of the solutions, rather than for any specific phys-
ical application. For the latter, the amplitudes would be
much smaller and the coupling parameter p somewhat
larger. At about £ = 17, the matching conditions are

0 2 4 6 8 10 12 14 16 18 20
3
FIG. 1. A typical envelope shock wave solution obtained by

matching. The dashed curves represent solution parts which
are not used.
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FIG. 2. The phase diagram of the Langmuir wave envelope
&o.

satisfied, and one can join the oscillating solutions to the
solutions £ = 0 and ¢ ~ —2. Figures 2 and 3 show the
phase diagrams for £ and ¢. Since the starting ampli-
tudes are small and p is small, one sees that the Langmuir
wave envelope and the potential of the nonlinear sound
waves are weakly coupled, until the nonlinear interac-
tion becomes strong enough for the waves to affect each
other. Figure 4 shows the & vs. ¢ phase diagram, which
is useful in the numerical search for the existence of the
suitable point at which solution matching can be made.
Similar to most solutions obtained by matching [17], the
higher order derivatives are not continuous, so that the
solutions here are mathematically weak solutions. Oscil-
latory shocklike solutions which are continuous in all the
derivatives may still exist. However, these are difficult to
find numerically as one has to have the exactly correct
set of the initial conditions. Finally, we mention that so-
lutions in which the matching occurs at maximum values
of ¢ can also be obtained.

3 2 1 0 1 2 3 4

FIG. 3. The phase diagram of the acoustic-wave potential
@.

&

FIG. 4. The ¢ vs. &, phase diagram. In the search for
matchable solutions, one looks for points like (—2,0) here.

VI. DISCUSSION

Equations (25) and (30) describe the coupling of
weakly (compared to the plasma frequency, not the rate
of modulation) damped Langmuir and the low-frequency
(kes € v; € Ve < wpe) nonlinear collisional ion sound
waves. This coupled set of nonlinear evolution equations
is the collisional counterpart of the Nishikawa et al. sys-
tem [7] for collisionless plasmas. It governs the behavior
of Langmuir turbulence in unmagnetized collisional plas-
mas.

Equation (32), which does not contain any dimension-
less parameters, is a forced KdV equation. The corre-
sponding quasistationary solutions, namely, the shock-
like envelope structures with oscillating tails or fronts,
occur in strongly collisional plasma in general. In fact,
envelope solitons of the Zakharov [8,9] or Nishikawa et al.
[7] types cannot appear in such plasmas. The fact that
thermal forces and interparticle heat transfer dominate
the nonlinear coupling is to be expected, since here the
collisional transport is more important than that from
inertia. Note also that the stationary shocklike struc-
tures found here are not true shock waves in the classical
sense, because steep gradients of the physical quantities
are not involved.

Finally, let us briefly compare the present study to
the recent work by Goldman et al. [13], who considered
the coupling of Langmuir and ion sound waves (or quasi-
modes) in a collisionless plasma. They introduced model
electron moment equations which are numerically con-
sistent with the corresponding kinetic theory results in
order to obtain a more complete description of the effect
of the Langmuir waves on the low-frequency dynamics.
The effect shows up as an electron pressure force acting
in conjunction with the usual ponderomotive force. This
pressure is in turn governed by an energy equation with
a linear collisionless heat flux (see also Ref. [18]), as well
as a heat source from the beating of the high-frequency
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waves. One sees that the physics involved is in some
sense similar to that of the corresponding low-frequency
motion in the present paper, except that in the latter
the ion nonlinearity is also included and the heat flux
and heat source (which dominate the coupling) originate
from actual particle-particle collisions.
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